Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly.

نویسندگان

  • S Lobert
  • J W Ingram
  • J J Correia
چکیده

Dilantin (phenytoin) is a commonly used antiepileptic agent that is known to decrease conductance of sodium and calcium ions and delay outward potassium currents. Separate from its antiseizure activity, dilantin interferes with microtubule protein polymerization. It induces metaphase arrest and potentiates the effects of the antimitotics vincristine and vinblastine in cell culture. We show here by fluorescence binding studies that dilantin interacts directly with tubulin at a low affinity site [Ka = 3.5 (+/- 2.5) x 10(3) M(-1); Kd = 286 microM]. We quantitatively examined the effect of dilantin on bulk microtubule formation and found that the drug raises the critical concentration for microtubule polymerization in 2 M glycerol identically in the presence or absence of vinblastine. The change in free energy for microtubule polymerization attributable to 400 microM dilantin [deltadelta G = 117 (+/- 28) cal/mol] is additive with vinblastine effects. Under the same conditions, mean microtubule lengths are 7.7 +/- 4.3 microm (n = 558) and 7.4 +/- 4.0 microm (n = 477) in the presence or absence of dilantin, respectively. Dilantin has no effect on vinblastine-induced tubulin spiral formation, as measured by sedimentation velocity. Our data suggest that the mechanism for the antimicrotubule effects of dilantin involves sequestration of tubulin heterodimers in 1:1 drug:tubulin complexes that do not participate in tubulin polymerization. The dilantin binding site is distinct from the Vinca binding site, and these independent binding modes account for the additive effects in vitro. The sequestration of tubulin heterodimers could explain the combined drug synergy in cell cultures if it disrupted interactions with proteins that regulate microtubule dynamics and/or cell cycle events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Study of Vinblastine-Tubulin Anticancer Complex

Vinblastine is an important anticancer agent known to diminish microtubule assembly. Ab initio calculations are applied to examine the structural properties and different energies of vinblastine-tubulin complex in different dielectric constants and temperatures. The aims of this work are discovery the best optimized structure and thermodynamic properties of vinblastine-tubulin complex ...

متن کامل

Molecular Modeling Studies on Vinblastine Binding Site of Tubulin for Antimitotic agents

Medicinal chemistry depends on many other disciplines ranging from organic chemistry andpharmacology to computational chemistry. Typically medicinal chemists use the moststraightforward ways to prepare compounds. The validation of any design project comes from thebiological testing.Studies of the binding site of vinblastine by a single cross—linking experiment identified it asbeing between resi...

متن کامل

Fibroblast contractility and actin organization are stimulated by microtubule inhibitors.

Despite considerable evidence that cytoplasmic microtubules play some role in guiding or controlling the locomotion of tissue cells, the nature of this control is not understood. In particular, little is known about the role of microtubules in the exertion of propulsive 'traction' forces, or about microtubule effects on the organization of the cytoplasmic actin stress fibers. In this study, the...

متن کامل

Discovery of active site of vinblastine as application of nanotechnology in medicine

Objective(s): Vinblastine is antimitotic, anticancer medicine that disturbs normal microtubule formation and favours depolymerisation. Structural study and finding the active site of vinblastine are the targets of this research.   Materials and Methods: Vinblastine was optimized in vacuum and then in different solvents by Density Functional Theory (DFT) method. Nuclear Magnetic Resonance (NMR) ...

متن کامل

Effect of tau on the vinblastine-induced aggregation of tubulin

Two microtubule-associated proteins, tau and the high molecular weight microtubule-associated protein 2 (MAP 2), were purified from rat brain microtubules. Addition of either protein to pure tubulin caused microtubule assembly. In the presence of tau and 10 microM vinblastine, tubulin aggregated into spiral structures. If tau was absent, or replaced by MAP 2, little aggregation occurred in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 59 19  شماره 

صفحات  -

تاریخ انتشار 1999